三角积分表

三角积分表

这个页面列举了一些含有三角函数的不定积分公式。以下的积分在被积函数的定义域内点的一个邻域上进行,且均省略积分常数且均假设伸缩系数

a

0.

{\displaystyle a \neq 0.}

目录

1 被积函数仅为一种三角函数的多项式

1.1 一次(基本公式)

1.2 二次

1.3 高次:递推公式

2 被积函数是幂函数与三角函数的乘积

2.1 幂函数为一次式

2.2 幂函数为高次:递推公式

3 被积函数是三角函数有理式

3.1 含有 a sin x + b cos x 的积分

3.2 含有 a + b sin x 或 cos x 的积分

3.3 含有 a + b sin x cos x 的积分

3.4 含有 a tan x + b cot x 的积分

被积函数仅为一种三角函数的多项式[]

一次(基本公式)[]

sin

a

x

d

x

=

1

a

cos

a

x

.

{\displaystyle \int \sin ax \mathrm{d}x = -\dfrac{1}{a} \cos ax.}

cos

a

x

d

x

=

1

a

sin

a

x

.

{\displaystyle \int \cos ax \mathrm{d}x = \dfrac{1}{a} \sin ax.}

tan

a

x

d

x

=

1

a

ln

|

cos

a

x

|

.

{\displaystyle \int \tan ax \mathrm{d}x = -\dfrac{1}{a} \ln |\cos ax|.}

cot

a

x

d

x

=

1

a

ln

|

sin

a

x

|

.

{\displaystyle \int \cot ax \mathrm{d}x = \dfrac{1}{a} \ln |\sin ax|.}

sec

a

x

d

x

=

1

a

ln

|

sec

a

x

+

tan

a

x

|

=

1

a

ln

|

tan

a

x

2

|

.

{\displaystyle \int \sec ax \mathrm{d}x = \dfrac{1}{a} \ln |\sec ax + \tan ax| = \dfrac{1}{a} \ln \left| \tan \dfrac{ax}{2} \right|.}

csc

a

x

d

x

=

1

a

ln

|

csc

a

x

cot

a

x

|

=

1

a

ln

|

tan

(

a

x

2

+

π

4

)

|

.

{\displaystyle \int \csc ax \mathrm{d}x = \dfrac{1}{a} \ln |\csc ax - \cot ax| = \dfrac{1}{a} \ln \left| \tan \left( \dfrac{ax}{2} + \dfrac{\pi}{4}\right) \right|.}

二次[]

sin

2

a

x

d

x

=

1

4

a

sin

2

a

x

+

1

2

x

.

{\displaystyle \int \sin^2 ax \mathrm{d}x = -\dfrac{1}{4a} \sin 2ax + \dfrac{1}{2}x.}

cos

2

a

x

d

x

=

1

4

a

sin

2

a

x

+

1

2

x

.

{\displaystyle \int \cos^2 ax \mathrm{d}x = \dfrac{1}{4a} \sin 2ax + \dfrac{1}{2}x.}

tan

2

a

x

d

x

=

1

a

tan

a

x

x

.

{\displaystyle \int \tan^2 ax \mathrm{d}x = \dfrac{1}{a} \tan ax - x.}

cot

2

a

x

d

x

=

1

a

cot

a

x

x

.

{\displaystyle \int \cot^2 ax \mathrm{d}x = -\dfrac{1}{a} \cot ax - x.}

sec

2

a

x

d

x

=

1

a

tan

a

x

.

{\displaystyle \int \sec^2 ax \mathrm{d}x = \dfrac{1}{a} \tan ax.}

csc

2

a

x

d

x

=

1

a

cot

a

x

.

{\displaystyle \int \csc^2 ax \mathrm{d}x = -\dfrac{1}{a} \cot ax.}

高次:递推公式[]

以下假设

n

>

1

{\displaystyle n>1}

是正整数。

sin

n

a

x

d

x

=

1

n

a

sin

n

1

a

x

cos

a

x

+

n

1

n

sin

n

2

a

x

d

x

.

{\displaystyle \int \sin^n ax \mathrm{d}x = -\dfrac{1}{na} \sin^{n-1} ax \cos ax + \dfrac{n-1}{n} \int \sin^{n-2} ax \mathrm{d}x.}

cos

n

a

x

d

x

=

1

n

a

cos

n

1

a

x

sin

a

x

+

n

1

n

cos

n

2

a

x

d

x

.

{\displaystyle \int \cos^n ax \mathrm{d}x = \dfrac{1}{na} \cos^{n-1} ax \sin ax + \dfrac{n-1}{n} \int \cos^{n-2} ax \mathrm{d}x.}

tan

n

a

x

d

x

=

1

(

n

1

)

a

tan

n

1

a

x

tan

n

2

a

x

d

x

.

{\displaystyle \int \tan^n ax \mathrm{d}x = \dfrac{1}{(n-1)a} \tan^{n-1} ax - \int \tan^{n-2} ax \mathrm{d}x.}

cot

n

a

x

d

x

=

1

(

n

1

)

a

cot

n

1

a

x

cot

n

2

a

x

d

x

.

{\displaystyle \int \cot^n ax \mathrm{d}x = -\dfrac{1}{(n-1)a} \cot^{n-1} ax - \int \cot^{n-2} ax \mathrm{d}x.}

sec

n

a

x

d

x

=

1

(

n

1

)

a

sec

n

2

a

x

tan

a

x

+

n

2

n

1

sec

n

2

a

x

d

x

.

{\displaystyle \int \sec^n ax \mathrm{d}x = \dfrac{1}{(n-1)a} \sec^{n-2} ax \tan ax + \dfrac{n-2}{n-1} \int \sec^{n-2} ax \mathrm{d}x.}

csc

n

a

x

d

x

=

1

(

n

1

)

a

csc

n

2

a

x

cot

a

x

+

n

2

n

1

csc

n

2

a

x

d

x

.

{\displaystyle \int \csc^n ax \mathrm{d}x = -\dfrac{1}{(n-1)a} \csc^{n-2} ax \cot ax + \dfrac{n-2}{n-1} \int \csc^{n-2} ax \mathrm{d}x.}

被积函数是幂函数与三角函数的乘积[]

幂函数为一次式[]

x

sin

a

x

d

x

=

1

a

2

sin

a

x

1

a

x

cos

a

x

.

{\displaystyle \int x \sin ax \mathrm{d}x = \dfrac{1}{a^2} \sin ax - \dfrac{1}{a} x \cos ax.}

x

cos

a

x

d

x

=

1

a

2

cos

a

x

+

1

a

x

sin

a

x

.

{\displaystyle \int x \cos ax \mathrm{d}x = \dfrac{1}{a^2} \cos ax + \dfrac{1}{a} x \sin ax.}

其它四类不是初等函数。

x

sin

2

a

x

d

x

=

1

4

x

2

1

4

a

x

sin

2

a

x

1

8

a

2

cos

2

a

x

.

{\displaystyle \int x \sin^2 ax \mathrm{d}x = \dfrac{1}{4} x^2 - \dfrac{1}{4a} x \sin 2ax - \dfrac{1}{8a^2} \cos 2ax.}

x

cos

2

a

x

d

x

=

1

4

x

2

+

1

4

a

x

sin

2

a

x

+

1

8

a

2

cos

2

a

x

.

{\displaystyle \int x \cos^2 ax \mathrm{d}x = \dfrac{1}{4} x^2 + \dfrac{1}{4a} x \sin 2ax + \dfrac{1}{8a^2} \cos 2ax.}

x

tan

2

a

x

d

x

=

1

2

x

2

+

1

a

x

tan

a

x

+

1

a

2

ln

|

cos

a

x

|

.

{\displaystyle \int x \tan^2 ax \mathrm{d}x = -\dfrac{1}{2} x^2 + \dfrac{1}{ a} x \tan ax + \dfrac{1}{ a^2} \ln|\cos ax|.}

x

cot

2

a

x

d

x

=

1

2

x

2

1

a

x

cot

a

x

+

1

a

2

ln

|

sin

a

x

|

.

{\displaystyle \int x \cot^2 ax \mathrm{d}x = -\dfrac{1}{2} x^2 - \dfrac{1}{ a} x \cot ax + \dfrac{1}{ a^2} \ln|\sin ax|.}

x

sec

2

a

x

d

x

=

1

a

x

tan

a

x

+

1

a

2

ln

|

cos

a

x

|

.

{\displaystyle \int x \sec^2 ax \mathrm{d}x = \dfrac{1}{a} x \tan ax + \dfrac{1}{a^2} \ln |\cos ax|.}

x

csc

2

a

x

d

x

=

1

a

x

cot

a

x

+

1

a

2

ln

|

sin

a

x

|

.

{\displaystyle \int x \csc^2 ax \mathrm{d}x = -\dfrac{1}{a} x \cot ax + \dfrac{1}{a^2} \ln |\sin ax|.}

幂函数为高次:递推公式[]

以下假设

n

>

1

{\displaystyle n>1}

是正整数。

x

n

sin

a

x

d

x

=

1

a

x

n

cos

a

x

+

n

a

x

n

1

cos

a

x

d

x

.

{\displaystyle \int x^n \sin ax \mathrm{d}x = -\dfrac{1}{a} x^n \cos ax + \dfrac{n}{a} \int x^{n-1} \cos ax \mathrm{d}x.}

x

n

cos

a

x

d

x

=

1

a

x

n

sin

a

x

n

a

x

n

1

sin

a

x

d

x

.

{\displaystyle \int x^n \cos ax \mathrm{d}x = \dfrac{1}{a} x^n \sin ax - \dfrac{n}{a} \int x^{n-1} \sin ax \mathrm{d}x.}

x

n

sin

a

x

d

x

=

1

n

1

x

n

+

1

sin

a

x

+

a

n

1

x

n

+

1

cos

a

x

d

x

.

{\displaystyle \int x^{-n} \sin ax \mathrm{d}x = -\dfrac{1}{n-1} x^{-n+1} \sin ax + \dfrac{a}{n-1} \int x^{-n+1} \cos ax \mathrm{d}x.}

x

n

cos

a

x

d

x

=

1

n

1

x

n

+

1

cos

a

x

a

n

1

x

n

+

1

sin

a

x

d

x

.

{\displaystyle \int x^{-n} \cos ax \mathrm{d}x = -\dfrac{1}{n-1} x^{-n+1} \cos ax - \dfrac{a}{n-1} \int x^{-n+1} \sin ax \mathrm{d}x.}

被积函数是三角函数有理式[]

以下均假设被积函数的分母有定义,且结果中的函数表达式在有极限的地方均有定义。这类问题的通用做法是半角代换,但是往往在一些问题中半角代换的结果很复杂,甚至使得原函数不再连续,其它可考虑的方法主要有三角恒等变形化简和配对积分法。

含有 a sin x + b cos x 的积分[]

A

sin

x

+

B

cos

x

a

sin

x

+

b

cos

x

d

x

{\displaystyle \int \dfrac{A\sin x + B\cos x}{a\sin x + b\cos x} \mathrm{d}x}

I

1

:=

sin

x

a

sin

x

+

b

cos

x

d

x

=

b

x

+

a

ln

|

a

sin

x

+

b

cos

x

|

a

2

+

b

2

.

{\displaystyle I_1 := \int \dfrac{\sin x}{a\sin x + b\cos x} \mathrm{d}x = \dfrac{bx + a\ln|a\sin x + b\cos x|}{a^2+b^2}.}

I

2

:=

cos

x

a

sin

x

+

b

cos

x

d

x

=

a

x

b

ln

|

a

sin

x

+

b

cos

x

|

a

2

+

b

2

.

{\displaystyle I_2 := \int \dfrac{\cos x}{a\sin x + b\cos x} \mathrm{d}x = \dfrac{ax - b\ln|a\sin x + b\cos x|}{a^2+b^2}.}

A

sin

x

+

B

cos

x

+

C

a

sin

x

+

b

cos

x

+

c

d

x

:

{\displaystyle \int \dfrac{A \sin x + B \cos x + C}{a\sin x + b\cos x + c} \mathrm{d}x:}

I

1

:=

sin

x

a

sin

x

+

b

cos

x

+

c

d

x

=

a

a

2

+

b

2

x

b

a

2

+

b

2

ln

|

a

sin

x

+

b

cos

x

+

c

|

a

c

a

2

+

b

2

I

3

.

{\displaystyle I_1 := \int \dfrac{\sin x}{a\sin x + b\cos x + c} \mathrm{d}x = \dfrac{a}{a^2+b^2}x - \dfrac{b}{a^2+b^2} \ln |a\sin x + b\cos x + c| - \dfrac{ac}{a^2+b^2} I_3.}

I

2

:=

cos

x

a

sin

x

+

b

cos

x

+

c

d

x

=

b

a

2

+

b

2

x

a

a

2

+

b

2

ln

|

a

sin

x

+

b

cos

x

+

c

|

b

c

a

2

+

b

2

I

3

.

{\displaystyle I_2 := \int \dfrac{\cos x}{a\sin x + b\cos x + c} \mathrm{d}x = \dfrac{b}{a^2+b^2}x - \dfrac{a}{a^2+b^2} \ln |a\sin x + b\cos x + c| - \dfrac{bc}{a^2+b^2} I_3.}

I

3

:=

1

a

sin

x

+

b

cos

x

+

c

d

x

=

d

x

c

+

a

2

+

b

2

sin

(

x

+

arctan

(

b

/

a

)

)

.

{\displaystyle I_3 := \int \dfrac{1}{a\sin x + b\cos x + c} \mathrm{d}x = \int \dfrac{\mathrm{d}x}{c + \sqrt{a^2+b^2} \sin(x + \arctan(b/a))}.}

(见下文)

A

sin

x

+

B

cos

x

(

a

sin

x

+

b

cos

x

)

2

d

x

{\displaystyle \int \dfrac{A\sin x + B\cos x}{(a\sin x + b\cos x)^2} \mathrm{d}x}

I

1

:=

sin

x

(

a

sin

x

+

b

cos

x

)

2

d

x

=

a

(

a

2

+

b

2

)

3

/

2

ln

|

tan

(

x

2

+

1

2

arctan

b

a

)

|

+

b

a

2

+

b

2

1

a

sin

x

+

b

cos

x

.

{\displaystyle I_1 := \int \dfrac{\sin x}{(a\sin x + b\cos x)^2} \mathrm{d}x = \dfrac{a}{(a^2+b^2)^{3/2}} \ln \left| \tan \left( \dfrac{x}{2} + \dfrac{1}{2} \arctan \dfrac{b}{a} \right) \right| + \dfrac{b}{a^2+b^2} \dfrac{1}{a\sin x + b\cos x}.}

I

2

:=

cos

x

(

a

sin

x

+

b

cos

x

)

2

d

x

=

b

(

a

2

+

b

2

)

3

/

2

ln

|

tan

(

x

2

+

1

2

arctan

b

a

)

|

a

a

2

+

b

2

1

a

sin

x

+

b

cos

x

.

{\displaystyle I_2 := \int \dfrac{\cos x}{(a\sin x + b\cos x)^2} \mathrm{d}x = \dfrac{b}{(a^2+b^2)^{3/2}} \ln \left| \tan \left( \dfrac{x}{2} + \dfrac{1}{2} \arctan \dfrac{b}{a} \right) \right| - \dfrac{a}{a^2+b^2} \dfrac{1}{a\sin x + b\cos x}.}

d

x

(

a

sin

x

+

b

cos

x

)

n

=

1

(

n

1

)

(

a

2

+

b

2

)

(

b

sin

x

a

cos

x

(

a

sin

x

+

b

cos

x

)

n

1

+

(

n

2

)

d

x

(

a

sin

x

+

b

cos

x

)

n

1

)

.

{\displaystyle \int \dfrac{\mathrm{d}x}{(a\sin x + b\cos x)^n} = \dfrac{1}{(n-1)(a^2+b^2)} \left( \dfrac{b\sin x - a\cos x}{(a\sin x + b\cos x)^{n-1}} + (n-2) \int \dfrac{\mathrm{d}x}{(a\sin x + b\cos x)^{n-1}} \right).}

A

sin

x

+

B

cos

x

(

a

sin

x

+

b

cos

x

)

n

d

x

=

A

a

+

B

b

a

2

+

b

2

d

x

(

a

sin

x

+

b

cos

x

)

n

1

B

a

A

b

(

n

1

)

(

a

2

+

b

2

)

1

(

a

sin

x

+

b

cos

x

)

n

1

.

{\displaystyle \int \dfrac{A\sin x + B\cos x}{(a\sin x+b\cos x)^n} \mathrm{d}x = \dfrac{Aa+Bb}{a^2+b^2} \int \dfrac{\mathrm{d}x}{(a\sin x + b\cos x)^{n-1}} - \dfrac{Ba - Ab}{(n-1)(a^2+b^2)} \dfrac{1}{(a\sin x + b\cos x)^{n-1}}.}

A

sin

2

x

+

2

B

sin

x

cos

x

+

C

cos

2

x

a

sin

x

+

b

cos

x

d

x

{\displaystyle \int \dfrac{A\sin^2 x + 2B \sin x \cos x + C\cos^2 x}{a\sin x + b\cos x} \mathrm{d}x}

I

1

:=

sin

2

x

a

sin

x

+

b

cos

x

d

x

=

b

2

(

a

2

+

b

2

)

3

/

2

ln

|

tan

x

2

+

1

2

arctan

b

a

|

a

cos

x

+

b

sin

x

a

2

+

b

2

.

{\displaystyle I_1 := \int \dfrac{\sin^2 x}{a\sin x + b\cos x} \mathrm{d}x = \dfrac{b^2}{(a^2+b^2)^{3/2}} \ln \left| \tan \dfrac{x}{2} + \dfrac{1}{2} \arctan \dfrac{b}{a} \right| - \dfrac{a\cos x + b\sin x}{a^2+b^2}.}

I

2

:=

sin

x

cos

x

a

sin

x

+

b

cos

x

d

x

=

a

b

(

a

2

+

b

2

)

3

/

2

ln

|

tan

x

2

+

1

2

arctan

b

a

|

+

a

sin

x

b

cos

x

a

2

+

b

2

.

{\displaystyle I_2 := \int \dfrac{\sin x \cos x}{a\sin x + b\cos x} \mathrm{d}x = -\dfrac{ab}{(a^2+b^2)^{3/2}} \ln \left| \tan \dfrac{x}{2} + \dfrac{1}{2} \arctan \dfrac{b}{a} \right| + \dfrac{a\sin x - b\cos x}{a^2+b^2}.}

I

3

:=

cos

2

x

a

sin

x

+

b

cos

x

d

x

=

a

2

(

a

2

+

b

2

)

3

/

2

ln

|

tan

x

2

+

1

2

arctan

b

a

|

+

a

cos

x

+

b

sin

x

a

2

+

b

2

.

{\displaystyle I_3 := \int \dfrac{\cos^2 x}{a\sin x + b\cos x} \mathrm{d}x = \dfrac{a^2}{(a^2+b^2)^{3/2}} \ln \left| \tan \dfrac{x}{2} + \dfrac{1}{2} \arctan \dfrac{b}{a} \right| + \dfrac{a\cos x + b\sin x}{a^2+b^2}.}

A

sin

2

x

+

2

B

sin

x

cos

x

+

C

cos

2

x

(

a

sin

x

+

b

cos

x

)

2

d

x

{\displaystyle \int \dfrac{A\sin^2 x + 2B \sin x \cos x + C\cos^2 x}{(a\sin x + b\cos x)^2} \mathrm{d}x}

I

1

:=

sin

2

x

(

a

sin

x

+

b

cos

x

)

2

d

x

=

b

2

(

a

2

+

b

2

)

2

b

sin

x

a

cos

x

a

sin

x

+

b

cos

x

+

a

2

b

2

(

a

2

+

b

2

)

2

x

2

a

b

(

a

2

+

b

2

)

2

ln

|

a

sin

x

+

b

cos

x

|

.

{\displaystyle I_1 := \int \dfrac{\sin^2 x}{(a\sin x + b\cos x)^2} \mathrm{d}x = \dfrac{b^2}{(a^2+b^2)^2} \dfrac{b\sin x - a\cos x}{a\sin x + b\cos x} + \dfrac{a^2-b^2}{(a^2+b^2)^2} x - \dfrac{2ab}{(a^2+b^2)^2} \ln |a\sin x + b\cos x|.}

I

2

:=

sin

x

cos

x

(

a

sin

x

+

b

cos

x

)

2

d

x

=

a

2

(

a

2

+

b

2

)

2

b

sin

x

a

cos

x

a

sin

x

+

b

cos

x

a

2

b

2

(

a

2

+

b

2

)

2

x

+

2

a

b

(

a

2

+

b

2

)

2

ln

|

a

sin

x

+

b

cos

x

|

.

{\displaystyle I_2 := \int \dfrac{\sin x \cos x}{(a\sin x + b\cos x)^2} \mathrm{d}x = \dfrac{a^2}{(a^2+b^2)^2} \dfrac{b\sin x - a\cos x}{a\sin x + b\cos x} - \dfrac{a^2-b^2}{(a^2+b^2)^2} x + \dfrac{2ab}{(a^2+b^2)^2} \ln |a\sin x + b\cos x|.}

I

3

:=

cos

2

x

(

a

sin

x

+

b

cos

x

)

2

d

x

=

b

2

a

I

1

+

a

2

b

I

3

=

a

b

(

a

2

+

b

2

)

2

b

sin

x

a

cos

x

a

sin

x

+

b

cos

x

(

a

2

b

2

)

2

2

a

b

(

a

2

+

b

2

)

2

x

+

2

(

a

2

b

2

)

(

a

2

+

b

2

)

2

ln

|

a

sin

x

+

b

cos

x

|

.

{\displaystyle \begin{align}I_3 := \int \dfrac{\cos^2 x}{(a\sin x + b\cos x)^2} \mathrm{d}x & = -\dfrac{b}{2a} I_1 + \dfrac{a}{2b} I_3 \\ & = - \dfrac{ab}{(a^2+b^2)^2} \dfrac{b\sin x - a\cos x}{a\sin x + b\cos x} - \dfrac{(a^2-b^2)^2}{2ab(a^2+b^2)^2} x + \dfrac{2(a^2-b^2)}{(a^2+b^2)^2} \ln |a\sin x + b\cos x|.\end{align}}

A

sin

3

x

+

B

cos

3

x

sin

x

+

cos

x

d

x

{\displaystyle \int \dfrac{A\sin^3 x + B\cos^3 x}{\sin x + \cos x} \mathrm{d}x}

I

1

:=

sin

3

x

sin

x

+

cos

x

d

x

=

1

2

x

+

1

4

cos

2

x

+

1

4

cos

x

sin

x

+

1

4

ln

|

sin

x

+

cos

x

|

.

{\displaystyle I_1 := \int \dfrac{\sin^3 x}{\sin x + \cos x} \mathrm{d}x = \dfrac{1}{2}x + \dfrac{1}{4} \cos^2 x + \dfrac{1}{4} \cos x \sin x + \dfrac{1}{4} \ln |\sin x + \cos x|.}

I

2

:=

cos

3

x

sin

x

+

cos

x

d

x

=

1

2

x

+

1

4

cos

2

x

1

4

cos

x

sin

x

1

4

ln

|

sin

x

+

cos

x

|

.

{\displaystyle I_2 := \int \dfrac{\cos^3 x}{\sin x + \cos x} \mathrm{d}x = \dfrac{1}{2}x + \dfrac{1}{4} \cos^2 x - \dfrac{1}{4} \cos x \sin x - \dfrac{1}{4} \ln |\sin x + \cos x|.}

含有 a + b sin x 或 cos x 的积分[]

主要考虑

1

a

+

b

sin

x

d

x

{\displaystyle \int \dfrac{1}{a + b\sin x} \mathrm{d}x}

1

a

b

cos

x

d

x

{\displaystyle \int \dfrac{1}{a - b\cos x} \mathrm{d}x}

。若积分为

1

a

b

sin

x

d

x

,

|

a

|

>

|

b

|

.

{\displaystyle \int \dfrac{1}{a - b\sin x} \mathrm{d}x, \quad |a| > |b|.}

仅需注意到

sin

(

x

+

π

)

=

sin

x

{\displaystyle \sin(x+\pi)=-\sin x}

,若积分为

1

a

+

b

cos

x

d

x

,

|

a

|

>

|

b

|

.

{\displaystyle \int \dfrac{1}{a + b\cos x} \mathrm{d}x, \quad |a| > |b|.}

仅需注意到

cos

(

x

+

π

)

=

cos

x

.

{\displaystyle \cos(x+\pi)=-\cos x.}

若分母是

sin

x

,

cos

x

{\displaystyle \sin x,\cos x}

的多项式,可以使用部分分式分解。

|

a

|

>

|

b

|

>

0

{\displaystyle |a| > |b| > 0}

1

a

+

b

sin

x

d

x

.

{\displaystyle \int \dfrac{1}{a + b\sin x} \mathrm{d}x.}

用半角代换的结果可能不是连续的,下述结果中第一个是连续的,第二个不连续。

I

1

:=

1

a

+

b

sin

x

d

x

=

1

a

2

b

2

(

2

arctan

b

cos

x

+

a

sin

x

+

b

a

2

b

2

sin

x

b

sin

x

a

cos

x

+

a

+

a

2

b

2

+

x

)

.

{\displaystyle I_1 := \int \dfrac{1}{a + b \sin x} \mathrm{d}x = \dfrac{1}{\sqrt{a^2-b^2}} \left( 2\arctan \dfrac{b\cos x + a\sin x + b - \sqrt{a^2-b^2} \sin x}{b\sin x - a\cos x + a + \sqrt{a^2-b^2}} + x \right).}

I

1

=

2

a

2

b

2

arctan

(

a

b

a

+

b

tan

(

π

4

x

2

)

)

.

{\displaystyle I_1 = -\dfrac{2}{\sqrt{a^2-b^2}} \arctan \left( \sqrt{\dfrac{a-b}{a+b}} \tan \left( \dfrac{\pi}{4} - \dfrac{x}{2} \right) \right).}

1

a

b

cos

x

d

x

.

{\displaystyle \int \dfrac{1}{a - b\cos x} \mathrm{d}x.}

用半角代换的结果可能不是连续的,下述结果中第一个是连续的,第二个不连续。

I

1

:=

1

a

b

cos

x

d

x

=

1

a

2

b

2

(

2

arctan

(

a

2

b

2

b

a

)

sin

x

(

a

+

b

a

2

b

2

)

cos

x

a

b

a

2

b

2

+

x

)

.

{\displaystyle I_1 := \int \dfrac{1}{a - b \cos x} \mathrm{d}x = \dfrac{1}{\sqrt{a^2-b^2}} \left( 2 \arctan \dfrac{(\sqrt{a^2-b^2}-b-a) \sin x}{(a+b-\sqrt{a^2-b^2})\cos x - a - b - \sqrt{a^2-b^2}} + x \right).}

I

1

=

1

a

b

cos

x

d

x

=

1

a

2

b

2

arctan

a

2

b

2

sin

x

a

cos

x

b

.

{\displaystyle I_1 = \int \dfrac{1}{a - b\cos x} \mathrm{d}x = \dfrac{1}{\sqrt{a^2-b^2}} \arctan \dfrac{\sqrt{a^2-b^2} \sin x}{a\cos x - b}.}

|

a

|

=

|

b

|

{\displaystyle |a|=|b|}

时就是下述情形:

1

1

+

sin

x

d

x

=

2

1

+

tan

x

2

.

{\displaystyle \int \dfrac{1}{1+\sin x}\mathrm{d}x = - \dfrac{2}{1+\tan \frac{x}{2}}.}

1

1

+

cos

x

d

x

=

tan

x

2

.

{\displaystyle \int \dfrac{1}{1+\cos x}\mathrm{d}x = \tan \dfrac{x}{2}.}

0

<

|

a

|

<

|

b

|

{\displaystyle 0 < |a| < |b|}

时用半角代换容易求得,这时被积函数存在无穷间断点。

d

x

a

+

b

sin

x

=

1

b

2

a

2

ln

|

a

tan

x

2

+

b

b

2

a

2

a

tan

x

2

+

b

+

b

2

a

2

|

.

{\displaystyle \int \dfrac{\mathrm{d}x}{a + b\sin x} = \dfrac{1}{\sqrt{b^2-a^2}} \ln \left| \dfrac{a\tan\frac{x}{2}+b-\sqrt{b^2-a^2}}{a\tan\frac{x}{2}+b+\sqrt{b^2-a^2}} \right|.}

d

x

a

b

cos

x

=

1

b

2

a

2

ln

|

(

a

+

b

)

tan

x

2

b

2

a

2

(

a

+

b

)

tan

x

2

+

b

2

a

2

|

.

{\displaystyle \int \dfrac{\mathrm{d}x}{a - b\cos x} = \dfrac{1}{\sqrt{b^2-a^2}} \ln \left| \dfrac{(a+b)\tan\frac{x}{2}-\sqrt{b^2-a^2}}{(a+b)\tan\frac{x}{2}+\sqrt{b^2-a^2}} \right|.}

含有 a + b sin x cos x 的积分[]

A

cos

x

+

B

sin

x

a

+

b

sin

x

cos

x

d

x

{\displaystyle \int \dfrac{A\cos x + B\sin x}{a + b\sin x \cos x} \mathrm{d}x}

I

1

=

cos

x

a

+

b

sin

x

cos

x

d

x

,

I

2

=

sin

x

a

+

b

sin

x

cos

x

d

x

.

{\displaystyle I_1 = \int \dfrac{\cos x}{a + b\sin x \cos x} \mathrm{d}x, \quad I_2 = \int \dfrac{\sin x}{a + b\sin x \cos x} \mathrm{d}x.}

2

a

<

b

{\displaystyle 2a < b}

时,注意到

{

I

1

+

I

2

=

1

b

(

b

+

2

a

)

ln

|

b

+

2

a

+

b

(

sin

x

cos

x

)

b

+

2

a

b

(

sin

x

cos

x

)

|

,

I

1

I

2

=

1

b

(

b

2

a

)

ln

|

b

(

sin

x

+

cos

x

)

b

2

a

b

(

sin

x

+

cos

x

)

+

b

2

a

|

.

{\displaystyle \begin{cases} I_1 + I_2 & = \dfrac{1}{\sqrt{b(b+2a)}} \ln \left| \dfrac{\sqrt{b+2a} + \sqrt{b} (\sin x - \cos x)}{\sqrt{b+2a} - \sqrt{b} (\sin x - \cos x)} \right|, \\

I_1 - I_2 & = \dfrac{1}{\sqrt{b(b-2a)}} \ln \left|\dfrac{\sqrt{b} (\sin x + \cos x) - \sqrt{b-2a}}{\sqrt{b} (\sin x + \cos x) + \sqrt{b-2a}} \right|. \end{cases}}

2

a

>

b

{\displaystyle 2a>b}

时,注意到

{

I

1

+

I

2

=

1

b

(

b

+

2

a

)

ln

|

b

+

2

a

+

b

(

sin

x

cos

x

)

b

+

2

a

b

(

sin

x

cos

x

)

|

,

I

1

I

2

=

2

b

(

2

a

b

)

arctan

b

(

sin

x

+

cos

x

)

2

a

b

.

{\displaystyle \begin{cases} I_1 + I_2 & = \dfrac{1}{\sqrt{b(b+2a)}} \ln \left| \dfrac{\sqrt{b+2a} + \sqrt{b} (\sin x - \cos x)}{\sqrt{b+2a} - \sqrt{b} (\sin x - \cos x)} \right|, \\

I_1 - I_2 & = \dfrac{2}{\sqrt{b(2a-b)}} \arctan \dfrac{\sqrt{b}(\sin x + \cos x)}{\sqrt{2a-b}}. \end{cases}}

含有 a tan x + b cot x 的积分[]

A

tan

x

+

B

cot

x

a

tan

x

+

b

cot

x

d

x

{\displaystyle \int \dfrac{A\tan x + B\cot x}{a\tan x + b\cot x} \mathrm{d}x}

I

1

:=

tan

x

a

tan

x

+

b

cot

x

d

x

=

1

a

b

(

x

1

a

b

arctan

(

a

b

tan

x

)

)

{\displaystyle I_1 := \int \dfrac{\tan x}{a\tan x + b\cot x}\mathrm{d}x = \dfrac{1}{a-b} \left( x - \dfrac{1}{\sqrt{ab}} \arctan \left( \sqrt{\dfrac{a}{b}} \tan x \right) \right)}

I

2

:=

cot

x

a

tan

x

+

b

cot

x

d

x

=

1

b

a

(

x

1

a

b

arctan

(

a

b

tan

x

)

)

{\displaystyle I_2 := \int \dfrac{\cot x}{a\tan x + b\cot x}\mathrm{d}x = \dfrac{1}{b-a} \left( x - \dfrac{1}{\sqrt{ab}} \arctan \left( \sqrt{\dfrac{a}{b}} \tan x \right) \right)}

A

tan

2

x

+

B

cot

2

x

a

tan

x

+

b

cot

x

d

x

{\displaystyle \int \dfrac{A\tan^2 x + B\cot^2 x}{a\tan x + b\cot x} \mathrm{d}x}

I

1

:=

tan

2

x

a

tan

x

+

b

cot

x

d

x

=

1

2

a

(

2

ln

|

cos

x

|

+

b

a

b

ln

|

a

sin

2

x

+

b

cos

2

x

|

)

.

{\displaystyle I_1 := \int \dfrac{\tan^2 x}{a\tan x + b\cot x} \mathrm{d}x = -\dfrac{1}{2a} \left( 2\ln|\cos x| + \dfrac{b}{a-b} \ln|a\sin^2 x + b\cos^2 x| \right).}

I

2

:=

cot

2

x

a

tan

x

+

b

cot

x

d

x

=

1

2

b

(

2

ln

|

sin

x

|

+

a

a

b

ln

|

a

sin

2

x

+

b

cos

2

x

|

)

.

{\displaystyle I_{2}:=\int {\dfrac {\cot ^{2}x}{a\tan x+b\cot x}}\mathrm {d} x=-{\dfrac {1}{2b}}\left(-2\ln |\sin x|+{\dfrac {a}{a-b}}\ln |a\sin ^{2}x+b\cos ^{2}x|\right).}

相关推荐

世界杯疑似假球不在少数 梅洛乌龙球成千古疑案
365bet官方平台

世界杯疑似假球不在少数 梅洛乌龙球成千古疑案

📅 09-16 👁️ 905
固件升级什么意思?固件升级到底是什么意思?它对设备性能有什么影响?固件升级到底是什么意思?它对设备性能有什么影响?
笔记本电脑全年价格走势(同一台笔记本电脑一年大概能降价多少元(现在6000——9000的价位))